Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for

Floor Tile

manufactured by Hitit Seramik

Programme:

Local Operator:

Publication Date:

The International EPD® System

EPD Turkey

2022-12-07

www.environdec.com

S-P Code:

Validity Date:

Programme Operator: EPD International AB

S-P-06763

2027-12-06

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804.

HITIT SERAMIK

Programme Information

EPD Turkey, managed and run by:

SÜRATAM

Süratam Sustainability Services, www.suratam.org Nef 09 B Blok No:7/15 34415 Kagıthane/Istanbul, Turkey www.epdturkey.org info@epdturkey.org

The International EPD® System:

EPD International AB

Box 210 60 SE-100 31 Stockholm, Sweden www.environdec.com info@environdec.com

Product Category Rules (PCR): 2019:14 Version 1.2.5, 2024-12-20, Construction Products and CPC 54 Construction Services, EN 15804:2012 + A2:2019 Sustainability of Construction Works

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

EPD process certification ()

EPD verification

Third party verifier: Prof. Vladimír Kocí Approved by: The International EPD® System

Procedure for follow-up of data during EPD validity involves third party verifier:

Yes ()

No 🛭

About Hitit Seramik

Established on October 17, 1989 for the production of Ceramic Floor and Wall Tiles, Hitit Seramik Sanayi ve Ticaret A.Ş. started its activities on February 22, 1991 with a total capacity of 2 million m² including 1,000,000 m² Wall Tiles and 1,000,000 m² Floor Tiles in the first stage on 500,000 m² land located in Uşak Organized Industrial Zone. Hitit Seramik entered into a rapid growth process as a result of the new investment activities that were accelerated following the installation and production and the production capacity of 10 million m² was achieved in 76,000 m² closed factories complex within a short period of time.

Capacity and product type increase was required and so, a decision on new investments made in 2004 and works were started rapidly in the face of domestic and international markets' trust and intense demands of Hitit Seramik products, brand, and quality in the 2000s. 40,000 m² additional closed factory buildings were built and completed with the company's own resources in a short period of time and 20 million m² capacity was achieved by reaching to an additional production capacity of 10 million m².

The history of *Hitit Seramik*

that always aims to produce and present the *cutting edge and bettermost*

• • •

It was aimed to present new and pioneering products that can be produced with special technologies and machines to Turkey and world markets by conducting extensive researches in investment studies and this has been achieved. Hitit Seramik has become one of the rare production facilities of the world that can produce the most sizes and types of coating materials in a production facility today with the power of its new investments.

These targets of Hitit Seramik, which always aims to produce the cutting edge and the bettermost, were achieved by identifying the needs of the user accurately, capturing innovative and creative approaches to respond to these constantly changing needs, creating a competitive structure within itself, conducting rigorous and forward-looking research in all investments, selecting the right technology and machinery, allocating large financial resources, and exhausting, but tasteful studies.

Product Description

It is a low-density, coarser, granular and porous inorganic material with a different recipe compared to porcelain tiles obtained by heating and hardening ceramic clay soil. It is popularly known as terracotta. Due to the high amount of porosity (pore ratio) in the ceramic tiles, they absorb water into their body and therefore do not have frost resistance. The cooking temperature is between 1150-1250. Ceramic tile should only be used indoors. They are materials with low strength and no thermal shock resistance. They distinguish between wall and floor tiles according to the firing temperature and the glaze feature.

UN CPC code for Floor Tiles is 37310.

Product Area of Application

It can be used for covering all indoor floors. Since it has a high water absorption capacity, it is not suitable for outdoor use where temperature differences occur.

Raw Material	Composition, %
Clay	40-50
Calcite	0-10
Feldspar	30-40
Others	0-5

Packaging Material	Weight, %/m²
Cardboard	7
Wood	89
Plastic	3
Glue	<1
Label	<1

LCA Information

> Goal and Scope

Evaluation of environmental impacts for 1 m² average tiles from cradle to grave.

> System Boundary

The system boundary of the Hitit Seramik Tiles are craddle to grave with module D.

		rodu Stage		Pro	trcution ocess tage				Use Stage			End of Life Stage			!	Benefits and Loads	
	Raw Material Supply	Transport	Manufacturing	Transport	Construction/ Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Deconstruction & Demolition	Transport	Waste Processing	Disposal	Future reuse. recycling or energy recovery potentials
Module	A1	A2	A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	СЗ	C4	D
Modules Declared	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Geography		TR								GL	O						
Specific Data Used			>9	0%		-											
Variation - products			0	%								-					
Variation - Sites			0	%								-					

Description of the system boundary $(X = Included in LCA, NR: Not Relevant)^*$

> Database and LCA Software Ecoinvent 3.8 and SimPro 9.3 is used for the calculation.

> Data Quality

Raw materials, energy and water consumption, waste generation, material and product transport data are primary data collected from Hitit Seramik.

> Period Under Review All primary data collected from Yurtbay is for the period year of 2021.

> Declared Unit 1 m² average tile with an average weight of 17 kg.

> Geographical Scope
The geographical scope of this EPD is
Türkiye.

^{*}Note: The LCA was modelled for specific product at plant so there is no variation.

^{*}Note: All primary data is taken from Hitit Seramik and Econvent was used for secondary data.

System Boundary

A1-A3

Raw Material Supply, Transport & Manufacturing

A1 represents raw material supply which includes raw material extraction and pre-treatment processes before production.

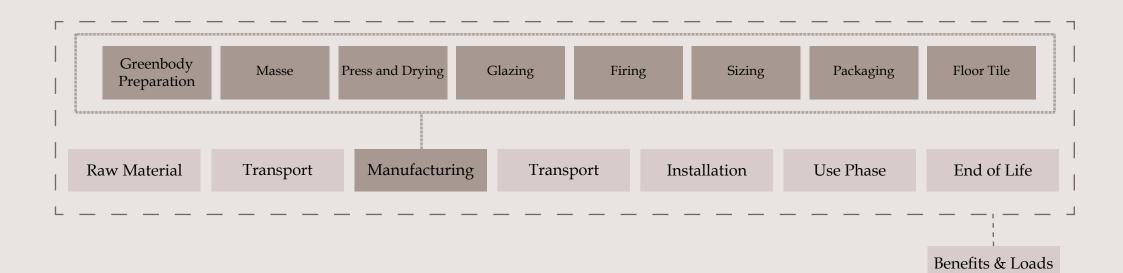
A2 relevant to raw material transportation to the plant and A3 refers to the impact occurs from manufacturing process.

A4

Product Transport

This stage is relevant to the transportation of the final product from the factory gate to the customers.

A5


Installation

This stage includes the adhesive mortar and water usage in the construction site. For 1 m² tile installation; 6 kg mortar and 1.5L water usage was adviced by Hitit Seramik.

B1

Use

Tiles do not cause any emissions in the use stage because of their inert feature.

System Boundary

B2

Maintenance

Hitit Seramik advices to use 0.2 mL detergent and rinse with 0.1 L tap water after cleaning. The results are given for a one-time cleaning activity, as the activity will vary by user.

B3-B5

Repair, Replacement, Refurbishment

Tiles do not require any repairment during the use phase and therefore no impacts should be declared.

B6-7

Operational Energy Use and Operational Water Use

Tiles do not require any water and energy in the use phase and therefore no impacts ocurred in this module. **C**1

Deconstruction/Demolition

Deconstruction of tiles at the end of their life is done manually. So no impact occurs in this module.

C2

Waste Transport

Waste transport includes diiscarded tiles and mortar to disposal area. Distance from demolition site to inert landfill site for final disposal is assumed as 50 km.

C3

Waste Processing

Environmental impacts generated during the crushing of discarded tiles before recycle or reuse are very low. Therefore, impacts are neglected.

C4

Disposal

Tiles end up at construction and demolition waste landfills at their end of life and modelled as such in this LCA.

D

Benefits & Loads

Inert filler benefits and recycling of packaging materials specified in the disposal stage.

LCA Results

	Unit	A1-A3	A4	A5	B1	B2	B3-B7	C1	C2	C3	C4	D
GWP-GHG	kg CO ₂ eq	9.40	0.868	7.74	0	1.08	0	0	0.192	0	0.315	-0.637
Acronyms	GWP-GHG = Glob red in the product.	This indicator	is thus equal to	the GWP indi	cator.							
							on biogenic c	arbon conten	at according		4+A2 Quantity	
						Biogenic Cai				it		

LCA Results

POTENTIAL ENV Indicator	Unit	A1-A3	A4	A5	B1	B2	B3-B7	C1	C2	C3	C4	D
GWP- Fossil	kg CO ₂ eq	9.52	0.876	7.92	0	0.405	0	0	0.194	0	0.320	-0.642
GWP- Biogenic	kg CO ₂ eq	0.026	0.002	0.151	0	0.255	0	0	520E-6	0	0.003	-0.002
GWP- Luluc	kg CO ₂ eq	0.022	383E-6	0.008	0	0.627	0	0	77.5E-6	0	324E-6	-0.002
GWP- Total	kg CO ₂ eq	9.57	0.878	8.08	0	1.29	0	0	0.194	0	0.323	-0.647
ODP	kg CFC11 eq	967E-9	188E-9	770E-9	0	63.2E-9	0	0	44.9E-9	0	97.3E-9	-124E-9
AP	mol H ⁺ eq	0.033	0.008	0.052	0	0.005	0	0	550E-6	0	0.003	-0.006
*EP - Freshwater	kg P eq	0.003	78.7E-6	0.003	0	0.004	0	0	12.7E-6	0	92.9E-6	-72.3E-6
EP - Freshwater	kg PO ₄ eq	0.010	241E-6	0.008	0	0.011	0	0	38.9E-6	0	284E-6	-221E-6
EP - Marine	kg N eq	0.007	0.002	0.009	0	0.005	0	0	112E-6	0	0.001	-0.002
EP - Terrestrial	mol N eq	0.068	0.021	0.089	0	0.017	0	0	1.22E-3	0	0.010	-0.020
POCP	kg NMVOC eq	0.018	0.005	0.026	0	0.003	0	0	316E-6	0	0.002	-0.005
ADPE	kg Sb eq	19.6E-6	2.30E-6	142E-6	0	8.42E-6	0	0	687E-9	0	1.05E-6	-3.76E-6
ADPF	MJ	134	12.8	114	0	4.21	0	0	2.94	0	7.52	-9.15
WDP	m³ depriv.	2.23	0.053	4.87	0	2.43	0	0	0.009	0	0.327	-0.789
PM	disease inc.	206E-9	52.0E-9	457E-9	0	70.9E-9	0	0	12.3E-9	0	52.4E-9	-60.6E-9
IR	kBq U-235 eq	0.156	0.064	0.478	0	0.030	0	0	0.015	0	0.035	-0.047
ETP-FW	CTUe	68.4	10.5	267	0	62.5	0	0	2.30	0	5.35	-8.68
HTP-C	CTUh	1.92E-9	317E-12	10.5E-9	0	1.17E-9	0	0	74.1E-12	0	230E-12	-496E-12
HTP-NC	CTUh	54.7E-9	9.6E-9	255E-9	0	24.0E-9	0	0	2.32E-9	0	3.57E-9	-8.93E-9
SQP	Pt	23.1	7.39	66.2	0	39.5	0	0	2.12	0	18.6	-20.5
Acronyms	GWP-total: Climate letion. AP: Acidifica cal oxidation. ADPF ETP-FW: Ecotoxicity	ntion terrestria E: Abiotic depl	l and freshwater etion - elements	r. EP-freshwate . ADPF: Abiotic	r: Eutrophicati c depletion - fo	ion freshwater. El ossil resources. W	P-marine: Eutro DP: Water scar	ophication mar	rine. EP-terrestrial: piratory inorgawnic	Eutrophications - particulat	on terrestrial. POC e matter. IR: Ionisi	CP: Photochemi
Legend	A1: Raw Material So B5: Refurbishment. System Boundary.											
Disclaimer 1	This impact categor dents. occupational also not measured b	exposure nor	due to radioacti									
Disclaimer 2	The results of this e	nvironmental	impact indicato	r shall be used	with care as th	e uncertainties or	these results a	are high or as t	here is limited exp	erienced with	the indicator.	
Disclaimer 3*	EP-freshwater: This ec.europa.eu/LCDN			as "kg P eq"as	required in th	e characterizatior	model. (EUTF	REND model. S	Struijs et al. 2009b.	as implement	ted in ReCiPe; http	o://eplca.jrc.

LCA Results

Indicator	Unit	A1-A3	A4	A5	B1	B2	B3-B7	C1	C2	C3	C4	D
PERE	MJ	7.95	0.183	7.29	0	18.6	0	0	0.042	0	0.128	-0.200
PERM	MJ	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	7.95	0.183	7.29	0	18.6	0	0	0.042	0	0.128	-0.200
PENRE	MJ	134	12.8	114	0	4.98	0	0	2.94	0	7.52	-9.16
PENRM	MJ	0	0	0	0	0	0	0	0	0	0	0
PENRT	MJ	134	12.8	114	0	4.98	0	0	2.94	0	7.52	-9.16
SM	kg	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0
FW	m³	0.047	0.002	0.111	0	0.123	0	0	492E-6	0	0.008	
FW Acronyms WASTE OUTPU	PERE: Use of r primary energ PENRT: Total	0.047 renewable primary y, PENRE: Use of use of non-renewa	energy exclud	ling resources u primary energ	sed as raw ma y excluding res	terials, PERM: Us ources used as ra	e of renewable p w materials, PEN	rimary energy IRM: Use of n	resources used as on-renewable pris	s raw materia mary energy i	ls, PERT: Total us resources used as	se of renewa raw materia
Acronyms	PERE: Use of r primary energ PENRT: Total	enewable primary y, PENRE: Use of	energy exclud	ling resources u primary energ	sed as raw ma y excluding res	terials, PERM: Us ources used as ra	e of renewable p w materials, PEN	rimary energy IRM: Use of n	resources used as on-renewable pris	s raw materia mary energy i	ls, PERT: Total us resources used as	se of renewa raw materia
Acronyms WASTE OUTPU	PERE: Use of r primary energ PENRT: Total	renewable primary y, PENRE: Use of use of non-renewa	r energy exclud non-renewable able primary er	ling resources u e primary energ nergy, SM: Secon	sed as raw ma y excluding res ndary material	terials, PERM: Us sources used as ra , RSF: Renewable	e of renewable p w materials, PEN secondary fuels,	rimary energy JRM: Use of n NRSF: Non-re	resources used as on-renewable printenewable seconda	s raw materia mary energy i ry fuels, FW:	ls, PERT: Total us resources used as Net use of fresh	se of renewa raw materia water.
Acronyms WASTE OUTPU Indicator	PERE: Use of a primary energ PENRT: Total UT FLOWS Unit	renewable primary y, PENRE: Use of use of non-renewa	v energy excludinon-renewable able primary er	ling resources us primary energy, SM: Secon	sed as raw ma y excluding res ndary material	terials, PERM: Us sources used as ra , RSF: Renewable	e of renewable p w materials, PEN secondary fuels,	rimary energy JRM: Use of n NRSF: Non-re	resources used as on-renewable prisenewable seconda	s raw materia mary energy r ry fuels, FW:	ls, PERT: Total usessources used as Net use of fresh	raw materia
Acronyms WASTE OUTPU Indicator HWD	PERE: Use of reprimary energe PENRT: Total UT FLOWS Unit kg	renewable primary y, PENRE: Use of use of non-renewa A1-A3 0.002	y energy exclude non-renewable ble primary er	ling resources us primary energy, SM: Secondary A5	sed as raw may excluding resolution material B1	terials, PERM: Us tources used as ra, RSF: Renewable	e of renewable p. w materials, PEN secondary fuels, B3-B7	cimary energy JRM: Use of n NRSF: Non-re	resources used as con-renewable prime enewable secondary C2	s raw materia mary energy r ry fuels, FW:	ls, PERT: Total us resources used as Net use of fresh	se of renewa raw materia water. D 0
Acronyms WASTE OUTPU Indicator HWD NHWD	PERE: Use of reprimary energy PENRT: Total UT FLOWS Unit kg kg	renewable primary y, PENRE: Use of use of non-renewa A1-A3 0.002 0.064	y energy exclude non-renewable primary er A4 0 0	A5 0 0	sed as raw may excluding resolution material B1 0 0	terials, PERM: Us tources used as ray RSF: Renewable B2 0 0	e of renewable p. w materials, PEN secondary fuels, B3-B7 0 0	crimary energy JRM: Use of n NRSF: Non-re	resources used as con-renewable prime enewable secondary and the condition of the condition	cs raw materia mary energy r ry fuels, FW:	ls, PERT: Total us resources used as Net use of fresh v	se of renewa raw materia water. D 0 0
Acronyms WASTE OUTPU Indicator HWD NHWD RWD	PERE: Use of reprimary energy PENRT: Total UT FLOWS Unit kg kg kg	renewable primary y, PENRE: Use of use of non-renewa A1-A3 0.002 0.064 0	A4 0 0 0	A5 0 0 0	sed as raw may excluding resoluting resoluting resoluting resoluting resoluting material B1 0 0 0	terials, PERM: Us sources used as ra, RSF: Renewable B2 0 0 0	e of renewable provided in the secondary fuels, B3-B7 0 0 0	crimary energy JRM: Use of n NRSF: Non-re	resources used as on-renewable primewable secondary conditions and conditions are conditionally conditionally conditions are conditionally con	cs raw materia mary energy r ry fuels, FW:	Is, PERT: Total uses resources used as Net use of fresh of the C4	se of renewa raw materia water. D 0 0 0
Acronyms WASTE OUTPU Indicator HWD NHWD RWD CRU	PERE: Use of reprimary energy PENRT: Total UT FLOWS Unit kg kg kg kg	A1-A3 0.002 0.064 0	A4 0 0 0	A5 0 0 0 0	sed as raw may excluding resoluting resoluting resoluting resoluting resoluting and are read at the second	terials, PERM: Us sources used as ra, RSF: Renewable B2	e of renewable provided in the secondary fuels, B3-B7 0 0 0 0	crimary energy JRM: Use of n NRSF: Non-re	resources used as on-renewable prime wable secondary and the secon	cs raw materia mary energy in ry fuels, FW:	Is, PERT: Total uses resources used as Net use of fresh value of fresh value of the description of the descr	se of renewa raw materia water. D 0 0 0 0
Acronyms WASTE OUTPU Indicator HWD NHWD RWD CRU MFR	PERE: Use of a primary energy PENRT: Total UT FLOWS Unit kg kg kg kg kg	renewable primary y, PENRE: Use of use of non-renewa A1-A3 0.002 0.064 0 0	A4 0 0 0 0	A5 0 0 0 0	sed as raw may excluding resoluting resoluting resoluting resoluting resoluting and are read as a second resolution of the second resolution resolution as a second resolution r	terials, PERM: Us sources used as ra, RSF: Renewable B2	e of renewable p w materials, PEN secondary fuels, B3-B7 0 0 0 0	crimary energy JRM: Use of n NRSF: Non-res	resources used as con-renewable prime enewable secondary and the s	c3 0 0 0 0	ls, PERT: Total uses resources used as Net use of fresh version of the second of the s	D 0 0 0 0 0

References

/GPI/ General Programme Instructions of the International EPD® System. Version 4.0.

/EN ISO 9001/ Quality Management Systems - Requirements

/EN ISO 14001/ Environmental Management Systems - Requirements

/Ecoinvent / Ecoinvent Centre. www.ecoinvent.org

/ISO 14020:2000/ Environmental Labels and Declarations — General principles

/EN 15804:2012+A2:2019/ Sustainability of construction works - Environmental Product Declarations — Core rules for the product category of construction products

/ISO 14025/ DIN EN ISO 14025:2009-11: Environmental labels and declarations - Type III environmental declarations - Principles and procedures

/ISO 14040/44/ DIN EN ISO 14040:2006-10. Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006) and Requirements and guidelines (ISO 14044:2006)

/PCR for Construction Products and CPC 54 Construction Services/ Prepared by IVL Swedish Environmental Research Institute. Swedish Environmental Protection Agency. SP Trä. Swedish Wood Preservation Institute. Swedisol. SCDA. Svenskt Limträ AB. SSAB. The International EPD System. 2019:14 Version 1.11 DATE 2019-12-20

/The International EPD® System/ The International EPD® System is a programme for type III environmental declarations. maintaining a system to verify and register EPD®s as well as keeping a library of EPD®s and PCRs in accordance with ISO 14025. www.environdec.com

/SimaPro/ SimaPro LCA Software. Pré Consultants. the Netherlands. www.presustainability.com

Contact Information

Programme	EPD® THE INTERNATIONAL EPD® SYSTEM	EPD registered through fully aligned The International EPD® System www.environdec.com	regional programme:
Programme Operator	TURKEY EPD® ENVIRONMENTAL PRODUCT DECLARATIONS	EPD Turkey: SÜRATAM A.Ş. Nef 09 B Blok No:7/15. 34415 Kağıthane / Istanbul. TURKEY www.epdturkey.org info@epdturkey.org	EPD International AB: Box 210 60 SE-100 31 Stockholm. Sweden www.environdec.com info@environdec.com
Owner of the Declaration	HITIT SERAMIK	Headquarter: Windowist Tower, Eski Büyükdere Cad. No:26 Kat:14-15-16 34467 Maslak - Sarıyer / İSTANBUL info@hititseramik.com	Uşak Plant: Organize Sanayi Bölgesi 101.Cadde No:1 PK:64000 UŞAK 0 (276) 266 7200
LCA Practitioner	MEGSIMS Sustainability Consulting	Turkey: Nef 09 B Blok NO:7/46-47. 34415 Kagıthane/Istanbul, TÜRKİYE +90 212 281 13 33 infoTR@metsims.com	United Kingdom: 4 Clear Water Place Oxford OX2 7NL. UK 0 800 722 0185 www.metsims.com info@metsims.com
3 rd Party Verifier	LCA Studio	LCA Studio Prof. Vladimír Kočí Šárecká 5,16000 Prague 6 - Czech Republic www.lcastudio.cz	

